Profiling of Mitochondrial Associated Proteins From Rat Colon

Sara Padidar,¹ Charles S. Bestwick,¹ Tim P. King,¹ Garry J. Rucklidge,² Gary J. Duncan,² Martin D. Reid,² and Janice E. Drew¹*

¹Gut Health Division, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK ²Proteomic Unit, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK

Abstract Mitochondrial dysfunction, damage and mutations of mitochondrial proteins give rise to a range of ill understood patterns of disease. Although there is significant general knowledge of the proteins and the functional processes of the mitochondria, there is little knowledge of difference about how mitochondria respond and how they are regulated in different organs and tissues. Proteomic profiling of mitochondria and associated proteins involved in mitochondrial regulation and trafficking within cells and tissues has the potential to provide insights into mitochondrial dysfunction associated with many human diseases. The rat colon mitoproteome analysis presented here provides a useful tool to assist in identification and interpretation of mitochondrial dysfunction implicated in colon pathogenesis. 2DPAGE followed by LC/MS/MS was used to identify 430 proteins from mitochondrial enriched fractions prepared from rat colon, resulting in 195 different proteins or approximately 50% of the resolved proteins being identified as multiple protein expression forms. Proteins associated with the colon mitoproteome were involved in calcium binding, cell cycle, energy metabolism and electron transport chain, protein folding, protein synthesis and degradation, redox regulation, structural proteins, signalling and transporter and channel proteins. The mitochondrial associated proteins identified in this study of colon tissue complement and are compared with other recently published mitoproteome analyses from other organ tissues, and will assist in revealing potentially organ specific roles of the mitochondria and organ specific disease associated with mitochondrial dysfunction. J. Cell. Biochem. 103: 78-97, 2008. © 2007 Wiley-Liss, Inc.

Key words: organelle proteomics; electron transport chain; mitochondrial dysfunction; flow cytometry; transmission electron microscopy

Mitochondria are intracellular double membrane-bound structures that regulate energy metabolism, cell division and cell death [Scheffler, 1999, 2001]. They utilize oxygen and produce ATP through carbohydrate and fatty

E-mail: jed@rowett.ac.uk

acid metabolism, modulate ionic homeostasis and participate in numerous other catabolic and anabolic pathways. They play a central role in the cascade of events that lead to apoptosis [Mignotte and Vayssiere, 1998; van Loo et al., 2002]. Consequently mitochondrial dysfunction, damage and mutations of mitochondrial proteins gives rise to a range of ill understood patterns of disease including cancer, type 2 diabetes, cardiovascular disease, Alzheimer's and Parkinson's disease [Brandon et al., 2006; Schapira, 2006].

Proteomic techniques have been commonly used to investigate cellular and tissue extracts limiting analysis to only the most abundant proteins, at the expense of subproteomes and less abundant proteins. The potential importance of less abundant proteins in disease processes thus requires a targeted approach to overcome such limitations. The application of

Abbreviations used: 2DPAGE, two-dimensional polyacrylamide gel electrophoresis; MPEFs, multiple protein expression forms; LC/MS/MS, liquid chromatography tandem mass spectrometry; MALDI-TOF MS, matrix-assisted laser desorption/ionisation time of flight mass spectrometry.

Grant sponsor: The Scottish Executive Environment and Rural Affairs Department (SEERAD); Grant number: 6411.

^{*}Correspondence to: Janice E. Drew, Gut Health Division, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK.

Received 1 February 2007; Accepted 29 March 2007 DOI 10.1002/jcb.21391

^{© 2007} Wiley-Liss, Inc.

organelle proteomics is thus a potentially powerful method to discover proteins involved in specific cellular functions or disease processes and reduce sample complexity. Although there is significant general knowledge of the proteins and the functional processes of the mitochondria, there is little knowledge of differences in how the mitochondria respond and how they are regulated in different organs and tissues. Different mammalian organ tissues have distinct energy needs and the number of mitochondria per cell, structure and function vary widely independently of the tissues' respiratory needs [Fawcett, 1981; Scheffler, 1999; Mannella, 2006]. Much of our understanding of the eukaryotic mitochondrion and its proteome has been carried out on mitochondria extracted from heart [Taylor et al., 2003; Gaucher et al., 2004; Kiri et al., 2005; Forner et al., 2006; Hunzinger et al., 2006; Kim et al., 2006; Reifschneider et al., 2006], brain [Reifschneider et al., 2006], kidney [Forner et al., 2006; Reifschneider et al., 2006], liver [Forner et al., 2006; Miller et al., 2006; Reifschneider et al., 2006], skeletal muscle [Forner et al., 2006; Reifschneider et al., 2006] and neural chondrocytes [Ruiz-Romero et al., 2006].

Recent investigations into inflammatory bowel disease have found changes to colon and ileal epithelial mitochondrial ultra structure [Soderholm et al., 2002; Nazli et al., 2004; Farhadi et al., 2005]. Studies investigating colon pathologies using proteomics approaches have revealed changes to mitochondrial proteins in response to inflammation and disease [Cole et al., 2002; Drew et al., 2005a, 2006a; Mazzanti and Giulivi, 2006; Mazzanti et al., 2006]. Many in vitro and in vivo studies implicate mitochondria in colon cancer progression [Rana et al., 1980; Sun et al., 1981; Pleshkwych et al., 1983; Oseroff, 1986; Modica-Napolitano et al., 1989; Mancini et al., 1997; Tutton and Barkla, 1997; Heerdt et al., 1998; Li et al., 1999; Cuezva et al., 2002; Ruemmele et al., 2003; Isidoro et al., 2004; Lakshman et al., 2004; Wang and MacNaughton, 2005]. Despite these numerous studies implicating mitochondria in colon pathology, none have focused on characterising the colon mitochondrial proteome. Since rat models are commonly used to study colon pathologies [Corpet and Parnaud, 1999; Drew et al., 2005a,b, 2006a; Mazzon et al., 2005; Yuki et al., 2006] this study was initiated to profile mitochondrial enriched fractions extracted from rat colon.

METHODS

Preparation of Mitochondrial Enriched Fractions

Sprague Dawley male rats weighing between 515 and 580 g were fed ad libitum on Chow for Rat and Mouse, CRM (Special Diet Services Ltd., Witham, Essex, UK) prior to sacrifice with carbon dioxide and cervical dislocation. Colons were excised and flushed with ice-cold 250 mM sucrose/10mM Tris (pH 7.4) buffer. A 2 cm segment was dissected from the mid-point of the distal two thirds of the colon for mitochondrial extraction as described below.

Mitochondrial enriched extracts were prepared using a mitochondrial isolation kit (MITO-ISO1, Sigma, UK) according to the manufacturers instructions. Briefly, tissues were minced and disrupted using an ultraturrax T25 (IKA) at 17,500 rpm, in buffer A (10 mM HEPES, pH 7.5, containing 200 mM mannitol, 70 mM sucrose, and 1 mM EGTA) supplied with the kit. Large cellular debris and nuclei were pelleted by centrifuging for 5 min at 600g, at 4°C. Mitochondria were pelleted by centrifuging the supernatant for 10 min at 11,000g. The pellet was resuspended in 500 μ l of extraction buffer A and the centrifugation steps at 600 and 11,000g were repeated. The resulting mitochondrial enriched fraction was then resuspended in storage buffer (10 mM HEPES, pH 7.4, containing 250 mM sucrose, 1 mM ATP, 0.08 mM ADP, 5 mM sodium succinate, 2 mM K₂HPO₄, and 1 mM DTT). Aliquots were extracted for protein estimation by BioRad Bradford Protein Assay, 2D page analysis and flow cytometric analysis. Alternatively, pellets were fixed in 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.3) for transmission electron microscopy (TEM). Aliquots for flow cytometry were used immediately to assess inner membrane integrity by JC-1 staining assay and aliquots for 2D page analysis were snap frozen and stored at -80° C until required.

Flow Cytometric Analysis of Mitochondrial Enriched Fractions

The enriched mitochondrial extracts were tested for inner membrane integrity using the JC-1 stain supplied with MITO-ISO1 kit according to the manufacturers instructions (Sigma, UK). Briefly, 20 µg of protein was used per 1 ml of JC-1 assay buffer (20 mM MOPS, pH 7.5, containing 110 mM KCl, 10 mM ATP, 10 mM MgCl₂, 10 mM sodium succinate, and 1 mM EGTA) containing 1 µl of JC-1 stain in DMSO. Samples were analysed using a FACS Calibur Flowcytometer G4 (Becton Dickinson, NJ) at flow rate of 35 µl/min, measuring 10,000 events using FL-1 voltage 650 and FL-2 voltage 557, both in logarithmic mode. The green FL-1 and orange FL-2 filters were used to detect JC-1 aggregates. One micromole of carbonyl cyanide 3-chlorophenylhydrazone (CCCP) in DMSO, a powerful and selective mitochondrial uncoupling agent that destroys the inner membrane potential was added for comparison. Data was analysed using CELL-Quest software version 3.3 (Becton-Dickinson). During data analysis intact mitochondria were identified with a decrease in FL-2 and an increase in FL-1 signal.

Transmission Electron Microscopic Analysis of Mitochondrial Enriched Fractions

Mitochondrial enriched fractions were initially fixed in 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer pH 7.4. The fractions were then washed in the cacodylate buffer, postfixed for 1 h at room temperature in 1% osmium tetroxide in 0.1 M sodium cacodylate buffer pH 7.4, washed again in the buffer and embedded in 1% agar. The agar-embedded pellet was dehydrated in a 50%, 70%, 90% and 100% ethanol series, cleared in propylene oxide and embedded in araldite resin CY212 (Agar Scientific, Stansted, UK). Ultra thin sections were cut using a Reichert microtome (Leica, UK), stained with uranyl acetate and lead citrate and examined in a JEOL 1200 EXB electron microscope (JEOL, UK) operating at 80 kV.

2D PAGE of Mitochondrial Enriched Fractions

Mitochondrial enriched protein extracts (290 μ g) were loaded onto BioRad IPG strips (17 cm, pH 3–10) in 340 μ l of 7 M urea, 2 M thiourea, 4% Chaps, 2% biolyte (BioRad) and 3% DTT buffer to separate the proteins in the first dimension. A second dimension SDS-PAGE step was run on an 18 cm × 18 cm linear SDS polyacrylamide gradient as described previously [Drew et al., 2005a]. The gels were then stained with colloidal Coomassie Blue staining as described by Anderson [1991]. Gels (n = 4) were then rinsed in deionised water and

brushed to remove particulate Coomassie Blue and imaged on a BioRad GS710 flat bed imager followed by image analysis using BioRad PD Quest Version 7.1.1. The gel with highest spot number and quality was selected as the match set standard. A total of 430 spots were matched on all four gels and were cut out for trypsin digestion and identification by LC/MS/MS.

Protein Identification by Nano-LC/MS/MS

Spots cut from 2D PAGE gels were analysed using a nano-LC system (LC Packings, Camberly, Surrey, UK) consisting of an 'Ultimate' nano-LC system, pumping at 0.187 ml/min with a 625 splitter giving a column flow rate of $0.3 \,\mu l/$ min, a 'Famos' autosampler set to an injection volume of 5 µl and a 'Switchos' microcolumn switching device. The nanocolumn was a C18 PepMap 100, $15 \text{ cm} \times 75 \text{ } \mu\text{m i.d.}, 3 \mu\text{m}, 100 \text{ A}$ (LC Packings). HPLC grade solvents were used, 2% acetonitrile and 0.1% formic acid (A) and 80%acetonitrile and 0.08% formic acid (B). The gradient started at 5% B, going to 50% B over 30 min, then ramping to 80% B over a further 2 min, and holding for 10 min. The system was equilibrated at 95% A for 9 min prior to injection of subsequent samples. The solvent used by the 'Switchos' is 0.1% formic acid. The switching device was switched on after 3 min and off after 58 min. The flow rate of the Switchos was 0.03 ml/min. Mass spectrometry was then performed using a Q-Trap (Applied Biosystems/MDS Sciex, Warrington, UK) triple quadrupole fitted with a nanospray ion source using parameters as described previously [Drew et al., 2005a]. Proteins were identified from the rat database, using Mascot, with individual ion scores >28 indicating identity or extensive homology (P < 0.05). The mouse database was searched where no significant match was made using the rat database. Identified proteins were then researched using SOURCE at BioInformatic Harvester (http://harvester.embl.de/), and PSORT II (http://psort.ims.u-tokyo.ac.jp/ form2.html) databases to identify their origin. Index of hydophobicity was calculated using the protein grand average of hydropathy index [Kyte and Doolittle, 1982] (http://bioinformatics. org/sms2/protein gravy.html). Proteins ID's were compared with published mitoproteomes of Reifschneider et al. [2006], Forner et al. [2006] and Taylor et al. [2003]. Protein ID's were BLAST searched to identify homologous proteins.

RESULTS

Flow Cytometric Analysis of Mitochondrial Enriched Fractions

Mitochondria enriched protein extracts were assessed for inner membrane integrity using JC-1 assay. Extracts were found to have intact inner membrane integrity (Fig. 1A) with a loss of FL-2 upon CCCP challenge (Fig. 1C), but not with DMSO (Fig. 1B). Cytosolic fractions (Fig. 1D) did not change in fluorescence with either DMSO (Fig. 1E) or CCCP (Fig. 1F) addition, indicating the absence of mitochondria.

Transmission Electron Microscopic Analysis of Mitochondrial Enriched Fractions

Transmission electron microscopy (TEM) was used to further confirm the presence of intact mitochondria in extract (Fig. 2), as characterised by a double membrane and cristae. Rough endoplasmic reticulum, as characterised by ribosome-rich membranes was also identified as a component of the mitochondrial enriched fractions indicative of the intimate relationship of mitochondria with these intracellular structures.

Proteomic Analysis of Mitochondrial Enriched Fractions

Four hundred and thirty spots (Mr 9.75-151.03, pI 4.03-9.6) were matched on all four gels (Fig. 3). A total of 430 proteins were identified by LC/MS/MS, yielding 195 different proteins categorised into 11 functional groups (Table I and Fig. 4). Proteins associated with the colon mitochondria were distributed over a pI range of 4.03-9.6 and a mass range between 12.35 and 151.03. Fifty-eight percent of the resolved and identified proteins were recognised as mitochondrial using SOURCE database in the BioInformatic Harvester search engine which uses updated gene and protein databases to attribute information on cellular localisation and function. This identified 101 different mitochondrial associated proteins (pI 4.22-9.6, Mr 13.58-126.76). Proteins not recognised as mitochondrial by BioInformatic Harvester were analysed by PSORT II, which predicts the sub-cellular localisation sites of

Fig. 1. Flow cytometric analysis of mitochondrial enriched fractions. **A,C**: Loss of FL-2 height and increased FL-1 height indicates loss of mitochondrial inner membrane integrity with CCCP (in DMSO) challenge, but not with DMSO (**B**). Cytosolic fractions do not change with either DMSO (**E**) or CCCP (**F**) addition, indicating the absence of mitochondria in the cytosolic fraction (**D**).

Fig. 2. Transmission electron microscopic image of mitochondrial enriched fractions. Mitochondria characterised by a double membrane and cristae.

proteins from recognition of mitochondrial targeting signals in the amino acid sequences [Nakai and Horton, 1999] by employing the discriminate analysis "MITDISC". Percentages

Fig. 3. Proteomic analysis of mitochondrial enriched fractions. 2D PAGE Coomassie Blue stained gel of colon mitochondrial enriched fractions generated over 430 spots common to four biological replicates (pl 4.03–9.6, Mr 9.75–151.03). Spots were trypsin digested and identified using LC/MS/MS.

depict the predicted percentage probability a protein is mitochondrial using the k-nearest neighbour (k-NN) algorithm [Horton and Nakai, 1997]. The probability assigned by PSORT II that a protein was localised to mitochondria is cited in Table I. Comparison of the proteins associated with the colon mitochondria with published mitoproteomes from other rat organs, kidney, liver, heart, brain and skeletal muscle [Forner et al., 2006; Reifschneider et al., 2006], revealed both common and unique proteins (Fig. 5). Ten proteins (5%) were common to other published rat mitoproteomes only (Fig. 5), 54 proteins (28%) were common with published human heart mitoproteome only [Taylor et al., 2003; Gaucher et al., 2004] and 62 proteins (32%) were common to both published rat organ and human heart mitoproteomes [Taylor et al., 2003; Gaucher et al., 2004; Forner et al., 2006; Reifschneider et al., 2006] resulting in 69 proteins novel to the colon mitoproteome (Fig. 5). Proteins common to previously profiled rat and human heart mitoproteomes were largely proteins involved in energy metabolism and oxidative phosphorylation, 61% and 50%, respectively. Novel mitochondrial associated proteins of the colon were mainly structural proteins such as cytokeratin 8 and those involved in protein synthesis and degradation, for example GM2 activator protein. These proteins although not classically associated with the mitochondria, still received high PSORT II predicted percentages, for example cytokeratin 8 at 78.3% (Table I). This protein was found to have 12 MPEFs in the colon mitoproteome and has been previously associated with the normal functioning of the colon [Toivola et al., 2004). Twenty-three proteins (mass 9.75-131.03 kDa and pI 3.7-9.34) were not identified by LC/MS/MS (Table I). Profile of the GRAVY values (Fig. 6) indicated the presence of many membrane proteins (high GRAVY index) but most proteins were not associated with membranes.

DISCUSSION

There is already considerable information known about the important role of mitochondria in regulation of apoptotic responses, energy metabolism and electron transfer. However, advances in application of proteomic analysis is now revealing further insights into the mitoproteome yielding significant tissue and

TABLE I. Four Hundred and Thirty Proteins Identified From Two-Dimensional Gel Electrophoresis of Mitochondrial Enriched	Protein Fractions Using LC/MIS/MIS
---	------------------------------------

			R	at	Colo	on N	1ito	och	ono	dria	al /	As	SO (cia	ted	Pr	ot	ein	S											83
PSORT II (%)	21.7 21.7 21.7 8.7 4.3	22.2 22.2	26.1 26.1	017	21.7	1.0			ς	0.0				Г 0	0.1						. 00	30.4	30.4	30.4						
GRAVY	-0.533 -0.533 -0.533 -0.430 -0.329	$^{-1.022}_{-1.022}$	-0.319 -0.319	-0.385	-0.472 -0.472 0.545	0.009 0.009	0.009	0.009	0.009	-0.147	-0.147	-0.147	0.031	-0.106	0.086	0.086	0.086	0.086	-0.355	-0.355	-0.355	-0.154	-0.154	-0.154	-0.297	-0.111	-0.146	-0.146	-0.146	-0.120
Organelle		Golgi Golgi		Μ		M	N	W	М	М	W	M	W	M	М	W	W	M	M	W	M				M	M	M	W	M	W
Function	CB CB CB CB CB CB CB CB CB CB CB CB CB C	BB	88	Cell Cycle	Cell Cycle	Cell Cycle	Cell Cycle	Cell Cycle Cell Cycle	Cell Cycle	EM	EM	EM	EM	EM	EM	EM	EM	EM	EM	EM	EM	EM	EM	EM	EM	EM	EM EM	EM	EM EM	EM
pI	7.97 7.34 8.29 5.66 5.18	5.26 5.18	$6.91 \\ 4.92$	7.92	7.76 7.76	6.37 6.37	6.28	0.17 6.17	5.76 7 14	10.7	7.16	00.0	6.56	7.3	9.11	8.99	9.18	$\overline{1.6}$	7.58	7.75	7.25	7.9	7.95	7.8	21.1	8.28	7.79	7.34	6.98 6.7	6.58
Mr	35.7 36.02 36.26 35.13 34.14	$67.2 \\ 68.04$	12.35 13.86	30.17	15.94 15.54	30.53 30.53	30.69	30.86 31.19	31.4 59 34	29.47	29.63	29.90	32.78	60.05 52 05	42.86	43.07	44.22	44.67	88.97 93 6	93.9	88.93	88.07 92.7	92.86	94.02	43.74 44.13	69.12	42.06 49.95	42.34	42.39 49.65	84.9
Accession number	ANX2_RAT ANX2_RAT ANX2_RAT ANX4_RAT ANX4_RAT LURT5	155472 155472	S100 RAT $S100$ RAT	AAH61727	H2A1_RA1 H2A1_RAT S09497	A39682 A39682	A39682	A39082 A39682	A39682	S06447	S06447	SU0447 A49345	A32867	Q9CV92	XXRTAC	XXRTAC	XXRTAC	XXRTAC	QUER34 DOFR34	Q9ER34	Q9ER34	AAH61999 AAH61999	AAH61999	AAH61999	DERTCM	A54872	B34252 R34959	B34252	B34252 R24959	BAC40232
Protein name	Annexin A2 = Lipocortin II = Calpactin I heavy chain Annexin A2 = Lipocortin II = Calpactin I heavy chain Annexin A2 = Lipocortin II = Calpactin I heavy chain Annexin A4 = Lipocortin IV Annexin v mutant = Lipocortin V	Calcium binding protein Calcium binding protein	Calpactin I light chain Calpactin I light chain	Adenylate kinase 2 = ATP-AMP transphosphorylase	nisione HZA. I Historie HZA. I Triations UM	Instance 114 Prohibitin Prohibitin	Prohibitin	Prohibitin	Prohibitin Similar to SEPTING tyme II	2-Enoyl-coa hydratase chain $A B$	2-Enoyl-coa hydratase chain A/B	2-Enoyt-coa nyaratase cnam A/B 3-Hydrorvbutvrate dehvdrogenase precursor	3-Hydroxyisobutyrate dehydrogenase, mitochondrial precursor	3-Oxoacid CoA transferase 1	4-1 trimeury tammoutly rate using the terry of the set	Acetyl-CoA C-acetyltransferase precursor, mitochondrial	Acetyl-CoA C-acetyurunsjeruse precursor, muocumuruu Acetyl-CoA C-acyltransferase mitochondrial	Acetyl-CoA C-acyltransferase mitochondrial	Aconitase 2 = Mitochondrial aconitase precursor Aconitase 9 – Mitochondrial aconitase macursor	Aconitase 2 = Mitochondrial aconitase precursor	Aconitase 2 = Mitochondrial aconitase precursor	Aconitase hydrase = aconitase 2 Aconitase hydrase = aconitase 2	Aconitase hydrase = aconitase 2	Aconitase hydrase = aconitase 2	Acyl-CoA denydrogenase precursor, medum-cnain-specinc, mitochondrial Acvl-CoA dehvdrogenase precursor, medium-chain-specific, mitochondrial	Acyl-CoA dehydrogenase very-long-chain-specific precursor	Acyl-CoA dehydrogenase, short-chain specific, mitochondrial precursor Acol-CoA dehydrogenase, short-chain snexific, mitochondrial precursor	Acyl-CoA dehydrogenase, short-chain specific, mitochondrial precursor Acyl-CoA dehydrogenase, short-chain specific, mitochondrial precursor	Acyl-CoA dehydrogenase, short-chain specific, mitochondrial precursor Aoul-CoA dahudrogenase, short-chain snoiffe, mitochondrial mooursor	Acyl-CoA synthetase short-chain family member 1

83

(Continued)

(Continued)	
I.	
TABLE	

Protein name	Accession number	Mr	pI	Function	Organelle	GRAVY	PSORT II (%)
Aldehyde dehydrogenase 2	Q91Zd7	55.73	6.84	EM	W	-0.111	
Aldehyde dehydrogenase 2	Q91Zd7	56.78	6.4	EM	W		
Auenyue uenyurogenuse 2 Aldobudo debudrocenace 9 (Mitochondrial)	107160	57.61	0.2.0 R 1	EM	M	-0.111	
Aldehyde dehydrogenase 2, Mitochondrial (Fragment)	Q6Q289 RAT	59.45	6.12	EM	W	-0.160	
Alpha enolase	ENOA_RAT	53.74	6.59	EM		-0.198	13.0
Alpha glucosidase 2	Q8BHN3	117.82	6.08	EM	ER	-0.325	33.3
Carnitine O-palmitoyltransferase II precursor, mitochondrial	A35447	55.97	5.04	EM	M	-0.295	
Carnitine O-palmitoyltransferase II precursor, mitochondrial	A35447	73.79	7.19	EM	W	-0.295	0
Coenzyme We homolog, methyltransferase		30.3 17 66	8.30 7 7 0	EM	м	-0.382	09.0
Creatine kinase precursor, muochonariai Creatine binase precursor mitochondrial	S17189	44.08	00.1	EM	M	-0.411	
Creatine kinase precursor, mitochondrial	S17189	44.51	8.09	EM	M	-0.422	
Creatine kinase precursor, mitochondrial	S17189	44.55	7.55	EM	M	-0.422	
Creatine kinase precursor, mitochondrial	S17189	46.3	8.07	EM	W	-0.422	
Dienoyl-coa isomerase probable peroxisomal enoyl-coa hydratase	IDCIA	33.85	6.84	EM	\overline{M}	-0.059	
D-Lactate dehydrogenase	Q7TNG8	51.67	6.83	EM	Z	-0.127	
Electron transfer flavoprotein alpha chain precursor	A31568	33.13	19.7	EM	W	0.120	
Liectron transferring Javoprotein, oeta polypeptuae Ploatene transferring flavoruotoin dobudrangoo	4010V3 AAA6736A	29.30 60 06	8.UJ	EM	M	116.0	
niecu vienuisjen niez huvopi vieni uenjan vzenuse Riectron-transferring-flanomrotein dehvdrogenase	AA067364	69 11	2012	EM	M	-0.311	
Planorrotein subunit of succinate-ubicuinone reductase	09201.2	76.24	6.42	EM	W	-0.254	
Flavoprotein subunit of succinate-ubiauinone reductase	092012	76.33	6.59	EM	W	-0.254	
Flavoprotein subunit of succinate-ubiquinone reductase	Q920L2	76.36	6.51	EM	M	-0.254	
Fructose-bisphosphate aldolase A	ADRTA	41.33	8.42	EM	W	-0.279	
Fructose-bisphosphate aldolase A	ADRTA	39.24	9.17	EM	M	-0.279	
Fructose-bisphosphate aldolase A	ADRTA	39.36	8.9	EM	W	-0.279	
Fructose-bisphosphate aldolase A	AUKIA	40.37	8.91	EM	M	0.279	
rumarate hyaratase precursor, muocnonariat Rumarate hydratase precursor, mitochondrial	UFRI	40.30 46.8	8.94 8.55	EM	M	060.0-	
r unu ure nya unas precu sa), muchona at Fumarate hydratase precursor, mitochondrial	TIFRT	47.34	8.16	EM	W	060.0-	
Glutamate dehydrogenase [NAD(P)] precursor	S03707	48.76	8.05	EM	M	-0.306	
Glutamate dehydrogenase [NAD(P)] precursor	S03707	54.33	7.44	EM	W	-0.306	
Glutamate dehydrogenase [NAD(P)] precursor	S03707	54.64	7.23	EM	W	-0.306	
Glutamate dehydrogenase [NAD(P)] precursor	S03707	54.64	7.71	EM	Μ	-0.306	
Glyceraldehyde-3-phosphate dehydrogenase (phosphorylating)	DERIG	36.17	8.76	EM	ЪЛ	-0.084	8.7
uryceror-o-pnospnate denyarogenase mucchonariai precursor Hydroxymothydnitowil CoA synthoso ywoonieow	A04001 A 25265	00.00	0.42 169	TAL	INI	0.190	
LIY ULOXYIII CHIYI BI HATYI-OOK SYIIVII ASE PI ECUISOF Hadrommothalati ami 1 OA amith aco moomaon	A 95265	17 69	00.# 0 7 0	EM	M	0.960	
uyu oxymeniyiguuu yr-con synnuse precursor Hvdroxymethylglutaryl-CoA synthase precursor	A35865	47.63	8.78	EM	W	-0.360	
Hydroxymethylglutaryl-CoA synthase precursor	A35865	47.95	8.5	EM	M	-0.360	
Hydroxymethylglutaryl-CoA synthase precursor	A35865	48.07	8.4	EM	M	-0.360	
Isocitrate dehydrogenase [NAD] subunit alpha mitochondrial	Q99NA5	42.74	6.13	EM	M	-0.397	
precursor = isocitrate dehydrogenase 3 alpha	ODDNIAE	00 11	6 71	N EG	М	209.0	
изосигие аенуагоденизе [луд.] зиоини цирни тиюспонигии precursor = isocitrate dehydrosenase 3 alpha	ALATERA	70.14	11.0		747	100.0-	
Isocitrate dehydrogenase [NAD] subunit alpha mitochondrial	Q99NA5	42.65	6.7	EM	M	-0.397	
precursor = isocitrate dehydrogenase 3 alpha		00 07	000		;		
Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial	Q99NA5	43.69	5.98	EM	W	-0.073	
precursor = isocintate a envariagements of might up to the second seco							

84

Padidar et al.

	Rat Colon Mitochondrial Associated Proteins	85
22.2	34.8 34.8	13.0 4.3 (Continued)
$\begin{array}{c} -0.398\\ -0.398\\ -0.400\\ -0.113\\ -0.113\\ -0.113\\ 0.064\\ 0.064\\ -0.223\\ -$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	-0.023 -0.019 -0.1183 -0.138 -0.138 -0.138
NNNNN NNNNN	NNEERENNNN NNNNNNNNNNNNNN	M M Non M Unknown
<i>EM</i> <i>EM</i> <i>EM</i> <i>EM</i> <i>EM</i> EM EM EM EM	ern Ben Ben Ben Ben Ben Ben Ben Ben Ben Be	EM EM EM EM EM Other Other
8,88 8,53 8,51 8,51 8,51 6,6 6,6 6,78 8,87 6,98 6,78 6,78 6,73 6,93 6,73 6,93	9.54 9.54 9.17 7.12 7.12 7.12 6.53 6.75 6.75 6.75 6.75 6.75 6.75 6.75 6.75	6.15 6.94 7.95 6.29 5.94 6.43
44.9 26.14 26.14 26.14 26.14 26.14 36.45 34.45 34.45 34.45 34.45 34.45 34.45 34.45 34.45 34.45 34.55 46.15	35.07 35.07 36.07 36.07 36.07 36.07 46.15 16.15 46.21 117.34 117.33 58.24 58.24 58.24 58.24 56.23 36.33 36.33 36.53 37.54 57.54 57.54 57.54 57.54 57.54 57.54 57.54 57.54 57.54 57.54 57.54 57.54 57.54 57.54 57.54 57.54 57.54 57.55 56.53 56.55 56	$\begin{array}{c} 48.64 \\ 52.3 \\ 70.9 \\ 64.55 \\ 64.55 \\ 37.9 \\ 17.9 \end{array}$
Q 8C2R9 Q8C2R9 Q9EQK1 Q9EQK1 Q9EQK1 C34252 C34252 C34252 A34252 A34252 A34252 A34252 A34252 A34252 A34252	AAH63165 DARF3MM A44097 A44097 A44097 CAA70513 Q9D115 CAA70513 Q8BM16 Q8BM16 Q8BM16 Q8BM16 Q91WP2 Q9	<i>Q8BGS6</i> <i>161704</i> AAA18026 T10806 Q99KE1 AAR16292 CAH2_RAT
Isocitrate delydrogenase 2 Isocitrate delydrogenase 2 Isocitrate delydrogenase 2 (NADP + specific) Isocitrate delydrogenase 2 (NAD+) beta Tumor-related protein Isouleryl-CoA delydrogenase precursor Isouleryl-CoA delydrogenase precursor I-Lactate delydrogenase chain A Long-chain-acyl-CoA delydrogenase precursor	Malate dehydrogenuse 2 Malate dehydrogenuse 2 Methylmalonate-semialdehyde dehydrogenase, family 6 Methylmalonate-semialdehyde dehydrogenase, family 6 Methylmalonyl CoA pinnervas Methylmalonyl CoA pinnervas Mitochondrial acyl-CoA thioesterase 1 Mitochondrial acyl-CoA thioesterase 1 Mitochondrial acyl-CoA thioesterase 1 NADH-ubiquinone oxidoreductase 75 kDa subunit Nucleoside-diphosphate kinase precursor Ornithine-oxo-acid transaminase filpoamide) = Ogdh protein Oxoglutarate dehydrogenase (lipoamide) = Ogdh protein Davregutarate dehydrogenase (lipoamide) = Ogdh protein Davrote dehydrogenase (lipoamide) = Ogdh protein Prynuote dehydrogenase (lipoamide) alpha chain 1 precursor Prynuote dehydrogenase (lipoamide) alpha chain 1 pre	Succinate-coenzyme A ligase Succinate-semialdehyde dehydrogenase = aldehyde dehydrogenase 5 Transketolase Ubiquinone biosynthesis protein = demethyl-Q 7 Malic enzyme 2, NAD(+)-dependent, mitochondrial AE017189 – Blast search: similar to capping protein muscle Z-line, a 2 Carbonic anhydrase II

TAI	BLE I. (Continu	ed)					
Protein name	Accession number	Mr	pI	Function	Organelle	GRAVY	PSORT II (%)
Coiled-coil-helix-coiled-coil-helix domain containing 3 Complement component 1, q subcomponent binding protein DNA segment, Chr 10, Johns Hopkins University 81 expressed Blast	Q9CRB9 CAA04531 Q9D172	23.76 35.33 27.72	8.42 4.32 8.42	Other Other Other	MMM	-1.030 -0.447 - 0.022	73.9
euron: est protein GoB-4 protein JeB-devendent histamine-releasing factor	$088312 \\ S00775$	$15.54 \\ 26.3$	$9.23 \\ 4.78$	Other Other	Unknown	$-0.394 \\ -0.361$	11.1
Lactorse-binding lectin L-36 Munosal hantraxin	A46631 AAr04681	21.29 27.87	7.58	Other Other	IInknown	-0.250	4.3
Nitrilase family, member 2 Nitrilase family, member 2	Q9JHW2 Q9JHW2	31.63 32.13	7.12 7.19	Other Other	M	-0.224 -0.224	
Polymerase delta-interacting protein 2 Purine-nucleoside phosphorylase	Q91VA6 Q9D8C9	37.84 31.82	$7.31 \\ 6.78$	Other Other	1	-0.526 -0.121	95.7 13.0
Stomatin (Epb7.2)-like 2 Thiosulfate sulfurtransferase	Q9DCG8 S15081	43.51 36.02	$6.2 \\ 8.47$	Other Other	W	-0.193 -0.447	
Unknown Unknown	Unknown Unknown	17.9 15.52	3.7 3.8	Other Other	Unknown Unknown		
Unknown	Unknown	15.69	4.16	Other	Unknown		
Unknown Unknown	Unknown Unknown	31.00 24.45	5.1	Other	Unknown Unknown		
Unknown Unknown	Unknown Unknown	74.01 107.03	5.26 5.63	Other Other	Unknown Unknown		
Unknown	Unknown	131.03	5.68 1.68	Other	Unknown		
Unknown Unknown	Unknown Unknown	103.43 53.43	0.90 6.1	Other	Unknown Unknown		
Unknown Thernown	Unknown Hhknown	77.13	6.17 6.29	Other Other	Unknown IInknown		
Unknown	Unknown	61.72	7.08	Other	Unknown		
Unknown Unknown	Unknown Unknown	67.04 40.82	7.09	Other Other	Unknown Unknown		
Unknown	Unknown	39.05	7.47	Other	Unknown		
∪nknown Unknown	Unknown Unknown	39.05 19.91	7.58	Other	Unknown Unknown		
Unknown	Unknown	59.78	7.69	Other	Unknown		
Unknown Tinbrown	Unknown IInbrown	15.08 16.45	7.84 7.05	Other Other	Unknown Unbrown		
Unknown	Unknown	9.75	8.31	Other	Unknown		
Unknown ATD amethena hafa ahain mitaahandnial maannaa	Unknown	27.34	9.34 E E9	Other Overnos	Unknown	160.0	
ATP synthese beta chain mitochondrial precursor ATP synthese beta chain mitochondrial precursor	ATPB_RAT	26.62	4.9	SOHAXO	W	0.034	
ATP synthase beta chain mitochondrial precursor ATP synthase beta chain mitochondrial precursor	ATPB_RAT ATPB_RAT	29.63 31.39	5.97 5.43	SOH4X0	W	$0.034 \\ 0.034$	
ATP synthase beta chain mitochondrial precursor	ATPB_RAT	32.69	4.72	SOHAXO	W	0.034	
AIF synthase oeta chain muochonartai precursor ATP synthase beta chain mitochondrial precursor	ATPB_RAT	57.31	5.44	SOHAXO	W	0.034	
ATP synthase beta chain mitochondrial precursor ATP synthase beta chain mitochondrial precursor	ATPB_RAT ATPB_RAT	59.15 63.53	5.07 5.16	SOH4X0 SOH4X0	W	$0.034 \\ 0.034$	
ATP synthase beta chain mitochondrial precursor ATP swithase beta chain mitochondrial precursor	ATPB_RAT	54.79	0.5 10	SOHdX0	W	0.034	
ATP synthese beta chain mitochondrial precursor	ATPB_RAT	55.61	5.13	SOHAXO	W	0.034	

86

Padidar et al.

																																																											17.4	17.4 17.4		(Continued)
0.034	-0.718	-0.718	-0.465	0.197	-0.090	-0.090	060.0-	0000	00000	00000	-0.090	-0.090	-0.090	-0.090	0000	00000	-0.090	-0.090	-0.090	-0.090	-0.090	-0.598	-0.149	-0.981	107.0	142.0-	0.034	0.034	0.034	0.034	-0.010	-0.010	-0.010	-0.010	036 0	0000	-0.00 	-0.442	-0.442	-0.442	0.157	-0.316	-0.283	-0.253	-0.253	-0.253	-0.189	-0.067	-0.067	-0.108	-1 000	1 000	1 000	-1.U39	-0.080	-0.085	-0.085	-0.085	-0.271	-0.271	T 17.0_	
M	М	М	N	M	M	M	M	M	M	247 747	M	М	M	М	M	TAT TAT	M	М	Μ	M	M	M	M	M	IN I	M	M	W	M	М	Μ	M	M	M	M	M	INT	INT INT	W	W	Μ	Μ	M	M	Μ	Μ	M	M	M	M	R.R			11	W	W	W	Μ				
SOHAXO	SOHAXO	SOHdXO	OXPHOS	OXPHOS	SOHAXO	SOHAXO	SOHdXU	SOHDAO	SOHDAU		COHAVO	SOHAXO	SOHAXO	SOHAXO	SOHdXU		COHAVO	SUHAXO	SOH <i>d</i> XO	SOHAXO	SOHAXO	SOHAXO	SOHdXU	SOHDAO	SOLIDAD	COLLAN	UAPHUS 01100	SUHAXO	SUHAXO	SOH _d XO	OXPHOS	SOHTXO	SOHAXO	SOHAXO	OVPHON		CULTAN	COLLAN	SUHAYO	SOHAXO	OXPHOS	OXPHOS	SOHAXO	SOH _d XO	SOH X	SOHOXO	SOHAXO	SOHAXO	SOHAXO	SOHAXO	DF.	DR.	DF		Pr.	Pr.	PF	PF	PF	· 무너		
5.59	6.58	6.22	8.38	4.35	8.61	9.15	8 76	201	10.0		4.81	4.16	4.91	7.65	61 8	0.40	0.42	8.13	7.91	8.12	7.86	4.77	6	<i>К К А</i>	100	0.94	0.24	6.23	6.02	6.02	8.13	7.53	7.25	6.93	7.03	02.0	0.13	0.04 7 7	0.04	6.37	8.47	5.48	6.41	8.13	7.83	6.09	5.68	8 51	836	7.64	4 5 4	0.4 1	1.01 1.01	4.0T	0.96	0.60 č =	5.7	6.09	6.84 48.1	6.78 6.78	0.00	
31.28	24.29	24.61	12.89	17.75	53.12	50.36	52.99	15 99	15.6	0.01	0.61	15.67	16.73	17.37	53 6	0.00	03.0	53.68	53.81	55.73	61.84	18.62	15.81	16 55	00.00	20.20	50.94 Ž1 00	21.89	70.9	73.69	59.11	61.07	61.49	76 19	12 00	14.0	14.4	41.17	41.76	44.34	15.25	30.04	48.1	50.36	50.57	67.72	53.42	44 94	44.58	26.95	50.56	69.00	10.00	11.14	00.71	00°.70	66.87	67.72	71.4	71.56	11.00	
ATPB RAT	$ATPO_RAT$	ATPO ⁻ RAT	A44861	AAC28872	A35730	A35730	A.35730	A 257 20	A 96790	100100	A35/30	A35730	A35730	A35730	A 25720	A 92790	A30730	A35730	A35730	A35730	A35730	CBRT5	S04599	RA 401743	DELTOTAT	DADZZJOU	00/172	S21766	S21766	S21766	AAH62069	AAH62069	AAH62069	A A H62069	NITEM PAT		NUFIN LAI	NOUWEU Domined	QSOWE0	QSUWED	Q80W89	A31868	Q91WD5	Q91YT0	Q01YT0	Q91YT0	RAR27022	S29510	S29510	A 322966	THORIG	THORIG	THOSIG	ATOUTS	HHK160	HHK160	HHKT60	HHRT60	AAH63178	AAH63178 AAH63178	OF TRATTERY	
ATP synthase beta chain mitochondrial precursor	ATP synthase D chain. mitochondrial F0 complex	ATP synthase D chain, mitochondrial F0 complex	ATP synthese. H + transporting, mitochondrial F0 complex, subunit, F6	ATP synthase. H + transporting. mitochondrial F1 complex. δ-subunit	ATP synthase. H+ transnorting, mitochondrial F1 complex, alpha subunit	ATP synthase, H+ transnorting, mitochondrial F1 complex, alpha submit	ATP synthese H + transnorting mitochondring F1 complex alpha sublinit	ATD construction H transformer mittain mittain H compare all her construction	All symmetries II + transporting, mitochonum III I. Complex, urpha subunit All samtheo II + transporting mitochonum III - Complex, alpha subunit	And synthese $m \neq m$, the meson integer integer integer of the metode $m \neq m$	AIP synthase, H + transporting, mitochonarial F1 complex, alpha subunit	ATP synthase, $H + transporting$, mitochondrial $F1$ complex, alpha subunit r	ATP synthase, H + transporting, mitochondrial F1 complex, alpha subunit	ATP synthase. H+transporting, mitochondrial F1 complex, alpha subunit	ΔTD surfaces H \pm transmission mitchindred F1 complex slabels which it	And syntheses, $11 + 11$ and solutions introduction $11 + 1$. Compared a property of the second secon	AIF synnase, H + transporting, mitochonartai F1 complex, alpha subunt	AIP synthase, $H + transporting$, mitochondrial FI complex, alpha subunit	ATP synthase, H + transporting, mitochondrial F1 complex, alpha subunit	ATP synthase, H + transporting, mitochondrial F1 complex, alpha subunit	ATP svnthase. H+transporting. mitochondrial F1 complex. alpha subunit	Cytochrome h5 microsomal sulice form	Cytochrome Corridge chain Va nooneer	Outochronie On outdress outbring the produced of	Cytorin one Comaras success V		DLSI anyaroupoamiae succinyuransferase component (EZ)	DLST Dihydrolipoamide succinyltransferase component (EZ)	DLST Dihydrolipoamide succinyltransferase component (E2)	DLST Dihydrolipoamide succinyltransferase component (E2)	E3 Dihydrolipoamide dehydrogenase	E3 Dihvdrolipoamide dehvdrogenase	E3 Dihvdrolinoamide dehvdrogenase	es anya orporation de la parte	NADH Johndaconneed (inhimmend) John emhannlav F	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	NADJI denyarogenase (uodunnne) 1 apna suocomptex 5	NADDI denyarogenase 1 alpha suocomplex 10-like protein	NADH denyarogenase 1 alpha subcomplex 10-like protein	NADH dehydrogenase 1 alpha subcomplex 10-like protein	NADH dehydrogenase 1 alpha subcomplex 11	NADH2 dehydrogenase (ubiquinone) 24K chain precursor	Similar to NADH dehydrogenase (Ubiquinone) Fe-S protein 2	Similar to NADH dehydrogenase Ubiquinone flavoprotein 1 51 kDa	Similar to NADH dehvdrogenase Ubiquinone flavobrotein 1 51 kDa	Similar to NADH dehvdrogenase Ubiouinone flavonrotein 1 51 kDa	[Thiouino]-extochrome c reductase core modeln 1	Thinning exterior of reduction over products	contained synchrone. Createring on protein H procursor	Ulhianinol_extechrome_c reductase Riesbe iron-sulfur nrotein nrecursor	Comparison of a comparison of the comparison of	Jantinilin produced	value subulin precursor		Chaperonin groed precursor = heat shock protein 60	Chaperonin groed precursor = heat shock protein 60	Chaperonin groef precursor = heat shock protein 60	<u>Chaperonin gro£L precursor = heat shock protein 60</u>	Chaperonin subunit 3 (gamma)	Chaperonin subunit 3 (gamma) Chanaronin subunit 3 (gamma)		

Rat Colon Mitochondrial Associated Proteins

87

	,						
Protein name	Accession number	Mr	pI	Function	Organelle	GRAVY	PSORT II (%)
Clathrin-associated protein complex 2, beta chain minor component Clathrin-associated protein complex 2, beta chain minor component DnaJ (Hsp40) homolog, subfamily B, member 11 Dnak-type molecular chaperone grp75 precursor = Mortalin Dnak-type molecular chaperone grp75 precursor = Mortalin	B32105 B32105 AAQ91040 AAD 33049 AA D33049	29.08 29.59 43.83 81.75 93.31	6.89 6.87 6.56 6.71	PF PF PF PF	Golgi Golgi ER	-0.061 -0.061 -0.556 -0.420	17.4 17.4 65.2 65.2
Dnak-type molecular chaperone grp75 precursor = Mortalin DnaK-type molecular chaperone grp75 precursor = Mortalin DnaK-type molecular chaperone grp75 precursort = Mortalin	AAb33049 AAb33049 AAb33049	$72.34 \\ 82.91 \\ 83.2$	5.53 5.81 5.96	PF PF PF		-0.420 -0.420 -0.420	65.2 65.2 65.2
DnaK-type molecular chaperone hsc73, heat shock protein 8 DnaK-type molecular chaperone hsc73, heat shock protein 8	S07197 S07197 S07107	79.39 79.42 00.01	5.68 5.81 7.67	PF PF DF	Non M Non M M	-0.452 -0.452	
Drack-type molecular chapterone precursor = heat shock 70 kDa protein 5 Drack-type molecular chapterone precursor = heat shock 70 kDa protein 5	HHRTGB HHRTGB	17.75 84.86	6.86 5.29	PF PF	ER	-0.481 -0.481 -0.481	
DnaK-type molecular chaperone precursor = heat shock 70 kDa protein 5 DnaK-type molecular chaperone precursor = heat shock 70 kDa protein 5	HHRTGB HHRTGB	85.31 84.85	5.19 5.24 7.40	PF PF DF	ER ER	-0.481 -0.481	
Dutat-type molectual chapterone precursor = near shock (0 kDa protein 5 Heat shock 70 kDa protein 1A Heat shock 70 kDa intotein 1A	ААЛ7441 АААЛ7441 АААЛ7441	76.36 78.4	0.49 6.3 5.98	PF PF	Non M Non M Non M	-0.401 - 0.395 -0.395	
Peptidylprolyl isomerase A Pentidylprolyl isomerase A	CSRTA CSRTA	17.13	8.27	PF PF		-0.340 -0.340	4.3 4.3
Protein disufficie isomerses associated 3 Protein disufficie isomerses associated 3	BAA09695 BAA09695	58.77	6.6	PF PF	ER ER	-0.455 -0.455	2
Protein tassaytur someras associated 3 Drytein disulfado isomeras associated 3	BAA09695 PAA09695	62.05 62.05	6.38	PF PF	ER	-0.455	
Protein ussuppue isomerase associated 3	BAA09695	62.55 62.55	6.49 6.49	PF DF	ER	-0.455 -0.455	
Frotein ussupper isomerase associated 3 Protein disuffide isomerase associated 3	BAA09095 $BAA09695$ $TSDMSS$	63.03 63.03	6.11	PF DF	ER	-0.455 -0.455	
Froueur ussuptue-isomeruse precursor Similar to for protein disulfide isomerase-related	Q921X9	66.13	4.97 7.66	PF Den	ER	-0.302 -1.099	
o-Mercaptopyruvate suiturtransterase 3-Mercaptopyruvate sulfurtransferase	THTM_RAT	33.5	0.40 6.3	UST UST	MM	-0.299	
Acidic ribosomal protein P0, cytosolic (similarity) Alpha-amylase (EC 3.2, 1.1) precursor, pancreatic	R5RT10 ALRTP	37.84 56.39	7.31	PSD DSD DSD	Non M Non M	$0.050 \\ -0.447 \\ 0.057 \\ 0.0$	
beta-tv-acetyinexosamınıqase beta cnaın Branched chain aminotransferase 2	B34745 AAH61790	41.16	0.78	UST UST	W	-0.237	
Branched chain amunotransferase 2 Cathepsin D precursor	AAH61790 $KHRTD$	42.06 46.5	5.89	PSD PSD	W	-0.115 0.008	
Cathepsin E precursor Cathensin S	S66465 A45087	50.81 28.85	4.64 5.6	PSD PSD	ER	0.092 - 0.519	4.3
Catherpsin Z Catherpsin Z Dinertidy: montidase II	BAA82844 JC7668	38.75 60.2	5.64 4.79	PSD	Non M	-0.429	111
Elongation fector 1-beta	EF1B MOUSE	34.73	4.57	PSD	J.L.	-0.250	11.1
Elongation factor TU	Q8BFR5	48.08	6.87	PSD	W		1 00
GMZ activator proteinase II precursor	PRRTG	26.73	4.89 9.6	UST UST	;	0.075	26.1 11.1
Methylcrotonoyl-Coenzyme A carboxylase 1 (atpha) Methylcrotonoyl-Coenzyme A carboxylase 2 (beta) Mitrochondrind Lon markeese homolog	AAH21382 AAH58987 0924\$5	56.09 115.82	6.94 7.89 6.27	PSD PSD PSD	NNN	-0.288 -0.078 -0.287	
Mitochondrial ribomsomal protein L12	BAB23955	22.72	5.48	PSD	W	-0.165	

Padidar et al.

TABLE I. (Continued)

88

17.4 21.7 8.7 8.7 8.7	8.7 17.4 21.7	21.7	4.3	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	26.1 21.7 21.7 21.7 21.7 21.7	, 4 8 7.7 8 7.0 8 7.0 8 5 3 8 3 8 3 8 4 8 3 8 4 8 7 8 7 7 8 8 8 7 8 8 8 8 8 8 8 8 8
$\begin{array}{c} -0.801\\ -0.363\\ -0.222\\ -0.187\\ -0.187\\ -0.187\\ -0.280\\ -0.419\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ -0.222\\ -0.422\\ -0.222\\ -0.222\\ -0.222\end{array}$	-0.222 -0.437 -0.258	-0.258	-0.237 -0.487 - 0.233	$\begin{array}{c} -0.005\\$	-0.147 -0.714 -0.714 -0.714 -0.714 -0.714	-0.234 -0.971 -0.971 -0.971 -0.568 -0.564 -0.554
NNNN N N NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN			Non M Non M		00000	
PSD PSD PSD PSD PSD PSD PSD PSD PSD Redox	Redox Signalling Signalling	Signalling	Signalling Signalling Struc-	Structural Structural Structural Structural Structural Structural Structural Structural	Structural Structural Structural Structural Structural Structural	Structural Structural Structural Structural Structural Structural
7.68 6.3 7.74 6.33 6.97 7.73 6.16 6.16 6.16 6.16 6.16 6.16 6.16 6.1	7.17 7.19 8.03	8.01	5.77 7.26 6.16	7.2.2 5.36 5.6 5.75 5.6 5.75 5.6 5.75 5.6 5.75 5.6 5.75 5.6 5.75 5.75	5.49 5.96 4.98 5.49 5.49	8.51 6.92 6.39 5.91 5.02 8.11
$\begin{array}{c} \textbf{41.43}\\ \textbf{41.43}\\ \textbf{52.41}\\ \textbf{52.451}\\ \textbf{52.41}\\ \textbf{55.82}\\ \textbf{55.82}\\ \textbf{55.82}\\ \textbf{55.19}\\ \textbf{55.82}\\ \textbf{55.13}\\ \textbf{25.51}\\ \textbf{25.51}$	25.42 38.29 32.98	32.27	38.74 36.67 39.6	$\begin{array}{c} 29.02\\ 29.75\\ 29.75\\ 32.52\\ 39.87\\ 40.15\\ 49.12\\ 53.57\\ 72$	121.03 78.54 38.39 41.1 42.76 42.81 42.08	$\begin{array}{c} 17.73 \\ 63.96 \\ 76.69 \\ 89.94 \\ 32.43 \\ 32.43 \\ 44.51 \\ 27.8 \end{array}$
Q8BTZ1 CAA60630 AAK02007 AAK12337 BAA03007 Q9Z1Y1 Q6bpdw1 S40780 CAT380 Q9Z0V6 Q000 CATA CATA Q000 CATA CATA CATA CATA CATA CATA CATA C	152425 ANX1_RAT A36986	A36986	AAC72249 JC4385 A22224	ATRTC ATRTC ATRTC ATRTC ATRTC ATRTC ATRTC ATRTC ATRTC ATRTC	AAC_{551Z} AAH61558 $DESM_RAT$ $DESM_RAT$ $DESM_RAT$ $DESM_RAT$ $DESM_RAT$ $DESM_RAT$	<i>JE0223</i> <i>Q8VHK3</i> <i>Q8VHK3</i> <i>Q8VHK3</i> <i>Q8VHK3</i> <i>Q61809</i> <i>Q61869</i> <i>Q61869</i>
Mitochondrial ribosomal protein L38 Neurolysin (metallopeptidase M3 family) Nitrogen fixation gene 1 Nitrogen fixation gene 1 Piptidase functionnulal processing) beta Plasma glutamate carboxypeptidase Ribosomal protein S12 Translation elongation factor EF-G, mitochondrial Catalase Coproporphyrinogen oxidase CuZn Superoxide dismutase Peroxiredoxin 3 Peroxiredoxin 4 Peroxiredoxin 3 Peroxiredoxin 2 Superoxide dismutase Mn precursor Superoxide dismutase Mn precursor Superoxide dismutase 2 mutant YES dimmer structure (Prdx1) Thioredoxin peroxidase 2 mutant YES dimmer structure (Prdx1)	Thioredoxin peroxidase 2 mutant YES dimmer structure (Prdx1) Annexin A1 Guanine nucleotide binding protein (G protein), beta polypeptide 2 like 1 activated	protein kunase Creceptor reactor Guanine nucleotide binding protein (G protein), beta polypeptide 2 like 1 activated moriein kinase Creceptor BACK1	Guantine nucleotide binding protein, beta 1 LIM protein Actin alpha 2, vascular smooth muscle	Actin beta Actin beta Actin beta Actin beta Actin beta Actin beta Actin beta	Apria-spectra z Desmin Desmin Desmin Desmin Desmin Desmin Desmin	$\begin{array}{c} Destrin\\ Ezrin\\ Ezrin\\ Ezrin\\ Ezrin\\ Eratin capping protein beta subunit\\ Keratin 18\\ Keratin 2 epidermis\end{array}$

Rat Colon Mitochondrial Associated Proteins

89

(Continued)

Protein name	Accession number	Mr	pI	Function	Organelle	GRAVY	PSORT II (%)
Keratin 2 epidermis Keratin 21, type I, cytoskeletal Keratin 21, type I, cytoskeletal Keratin 59K type I cytoskeletal (cytokeratin 10)	Q61869 A40452 A40452 KRMSE1	67.67 48.01 19.07	6.71 4.89 5.37 5.37	Structural Structural Structural Structural		$\begin{array}{c} -0.597 \\ -0.727 \\ -0.727 \\ -0.695 \end{array}$	4.3 78.3 43.3 25.5
Keratin 59K type I cytoskeletal (cytokeratin 10) Keratin 59K type I cytoskeletal (cytokeratin 10) Keratin, type II cytoskeletal 2 (cytokeratin 8) (cytokeratin endo A)	KRMSE1 KRMSE1 K2C8 RAT	$23.2 \\ 39.2 \\ 42.85$	$8.66 \\ 6.61 \\ 5.18$	Structural Structural Structural		-0.695 -0.695 -0.672	43.5 43.5 78.3
Keratin, type II cytoskeletal 2 (cytokeratin 8) (cytokeratin endo A) Keratin, type II cytoskeletal 2 (cytokeratin 8) (cytokeratin endo A) Keratin, type II cytoskeletal 2 (cytokeratin 8) (cytokeratin endo A)	K2C8_RAT K2C8_RAT K2C8_RAT	$18.84 \\ 22.44 \\ 24.02$	4.92 4.89 4.89	Structural Structural Structural		$\begin{array}{c} -0.672 \\ -0.672 \\ -0.672 \end{array}$	78.3 78.3 78.3
Keratin, type II cytoskeletal 2 (cytokeratin 8) (cytokeratin endo A) Keratin, type II cytoskeletal 2 (cytokeratin 8) (cytokeratin endo A) Keratin, type II cytoskeletal 2 (cytokeratin 8) (cytokeratin endo A)	K2C8_RAT K2C8_RAT K2C8_RAT	$27.55 \\ 43.47 \\ 42.16$	$5.48 \\ 5.26 \\ 5.04$	Structural Structural Structural		$-0.672 \\ -0.672 \\ -0.672$	78.3 78.3 78.3
Keratin, type II cytoskeletal 8 Keratin, type II cytoskeletal 8 Keratin, type II cytoskeletal 8	K2C8_RAT K2C8_RAT K2C8_RAT	$\begin{array}{c} 42.64 \\ 43.81 \\ 51.76 \\ 70.07 \end{array}$	5.08 5.19 5.82	Structural Structural Structural		-0.672 -0.672 -0.672	78.3 78.3 72.5
Reratin, type II cytoskeletal 8 Keratin, type II cytoskeletal 8 (Cytokeratin-8) LASP-1. Morecia Each choise 6 cultal: conceth accord informant CocM	KZCS KAT K2C8 RAT Q99MZ8 MT PS PAT	59.23 41.75 39.44	6.24 6.99 4.20	Structural Structural Structural		-0.672 -0.672 -1.035 0.431	78.3 8.7 8.7
Myosin ngue chain 6, alkan, smooth muscle isoform MLC35M Myosin light chain 6, alkali, smooth muscle isoform MLC35M Myosin regulatory light chain 2-A, smooth muscle isoform (Myosin RLC-A)	MLES_RAT MLRA_RAT	17.44 17.44 19.22	4.20 4.71	Structural Structural		-0.421 -0.421 - 0.809	0.4.4 0.0 0.0
Myosin regulatory light chain 2-A, smooth muscle isoform (Myosin RLC-A)	MLRA_RAT	20.17	4.87	tural Struc-		-0.809	4.3
Myosin regulatory light chain 2-A, smooth muscle isoform (Myosin RLC-A)	MLRA_RAT	20.24	4.65	struc-		-0.809	4.3
Plectin 1 <i>Profilin I</i> Saposin precursor Similar to intermediate filament-like protein MGC:2625 isoform 2;	A39638 <i>Prol_MOUSE</i> A28716 Q7TP27	115.67 15.11 14.44 66.79	5.63 8.85 4.03 7.28	Structural Structural Structural Structural	M Non M	-0.687 0.018 -0.034 - 0.191	8.7 8.7
Similar to transgelin 2 (SM22 beta) Transgelin (Smooth muscle protein 22-alpha) Transgelin (Smooth muscle protein 22-alpha) (SM22-alpha Transgelin SM22-alpha	<i>Q91VU2</i> TAGL_RAT TAGL_RAT TAGL_RAT	23.22 79.27 39.1 16.74	8.83 5.41 6.76 6.6	<i>Structural</i> Structural Structural Structural		-0.637 -0.634 -0.634 -0.634	21.7 4.3 4.3
Transgelin SM22-alpha Transgelin SM22-alpha Tropomyosin alpha isoform 1 Tropomyosin alpha isoform 6	TAGL RAT TAGL RAT Q923Z2 S34124	17.31 17.48 44.74 33.6	7.04 6.58 4.62 4.75	Structural Structural Structural Structural		-0.634 -0.634 -1.018	4.3 4.3 17.4 17.4
Tubulin alpha-6 chain (Alpha-tubulin 6) Tubulin, beta 2c Vinculin	Q6AYZ1 AAH60597 Q922D9	63.78 59.62 126.34	5.45 5.18 6.38	Structural Structural Structural	Non M	-0.234 -0.357 -0.421	4.3 17.4
LT-0-0 protein epsiton (Altechnication at unport summunion Jacon L subunit) = tyrosine 3-monooxygenase 14-3-3 protein epsilon (Mitochondrial import stimulation factor	AAC52676 AAC52676	33.69	4.61	TC	M novi	-0.540	
L subunit) = tyrosine 3-monooxygenase Chloride intracellular channel 1 Cofilin-1 Ethylmalonic encephalopathy 1	BAC40585 S49101 Q9DCM0	$33.48 \\ 18.37 \\ 28.85$	5.45 8.66 7.13	TC TC	Μ	-0.305 -0.388 -0.096	8.7 4.3

TABLE I. (Continued)

90

Padidar et al.

Ethylmalonic encephalopathy 1	Q9DCM0	29.14	6.54	\mathbf{TC}	M	-0.096	
Flotillin 1	AAC98705	49.48	7.29	\mathbf{TC}		-0.355	21.7
Hemoglobin alpha-1 and alpha-2 chains	$HBA \ RAT$	14.14	9.08	TC	Non M	-0.130	
Hemoglobin beta chain, major-form	HBB1 RAT	14.07	8.55	TC		-0.055	4.3
Hemoglobin beta chain, major-form	HBB1 RAT	14.09	8.77	TC		-0.055	4.3
Hemoglobin beta chain, major-form	$HBB1^{-}RAT$	14.11	8.45	TC		-0.055	4.3
Neonatal fc receptor chain B	$2 \mathrm{FRTB}$	13.58	7.76	TC	Non M	-0.142	
Protein CGI-51 homolog	Q8BGH2	57.03	2	TC	M	-0.206	
Ribosome binding protein 1	BAC98159	38.83	4.88	TC	ER	-0.923	
Similar to golgi phosphoprotein 3 (Coat-protein)	Q8R088	35.16	6.05	\mathbf{TC}	Golgi	-0.625	39.1
Transitional endoplasmic reticulum ATPase	A55190	108.62	5.55	TC	ER	-0.354	
Translocase of inner mitochondrial membrane 50 homolog	Q9D880	36.57	6.11	TC	M	-0.383	
Translocase of inner mitochondrial membrane 50 homolog	Q9D880	37.17	6.77	TC	Μ	-0.383	
Tumor rejection antigen $gp96 = heat$ shock protein 90 kDa, Grp 94	Q91V38	110.97	4.92	TC	ER	-0.720	
Voltage-dependent anion channel 2	$\hat{\mathbf{Q}}9JI32$	32.42	8.5	TC	M	-0.221	
Voltage-dependent anion channel 2	Q9J132	32.9	7.03	TC	M	-0.221	
Voltage-dependent anion channel 2	Q9J132	33.11	8.2	TC	M	-0.221	
Voltage-dependent anion channel 2	Q9J132	33.14	7.32	TC	M	-0.221	
Voltage-dependent anion channel 2	Q9J132	33.47	7.15	TC	M	-0.221	
Voltage-dependent anion channel 2	Q9J132	33.57	1.01	TC	M	-0.221	
Voltage-dependent anion channel 2	Q9J132	34.2	6.5	TC	M	-0.221	
Voltage-dependent anion channel 2	Q9J132	34.27	7.07	TC	M	-0.221	
Voltage-dependent anion channel 2	Q9J132	34.93	6.54	TC	M	-0.221	
Voltage-dependent anion channel 2	Q9J132	35.46	7.04	TC	M	-0.221	
Voltage-dependent anion-selective channel protein 1	POR1 RAT	28.03	6.8	TC	M	-0.374	
Voltage-dependent anion-selective channel protein 1	POR1_RAT	31	9.6	TC	M	-0.374	
Voltage-dependent anion-selective channel protein 1	POR1_RAT	32.05	9.07	TC	M	-0.374	
Proteins are ordered by functional groups. Mr and nI values estimated from 2D :	gel. F.R. = endonlasmic retic	culum and M	[= mitoch	ondrial. as a	ccording to SOUR(CE from BioInfo	matic Harvester
		TIT NTIN TIT NTN N		S 2S ITST TOTTO	())))))))) () () () () () () ()		TOWARD & TOWER OTOWITT

(http://harvester.embl.de/), where no subcellular localisation is stated a PSORT II percentages depicting the predicted percentage probability a protein is mitochondrial using the k-nearest neighbour (k-NN) algorithm [Horton and Nakai, 1997] is stated instead. CB = calcium binding, EM = energy metabolism, OXPHOS = oxidative phosphorylation, PF = protein folding, PSD = protein synthesis and degradation, TC = Transporters and channels. *Italics* represents proteins found in human heart mitoproteomes [Taylor et al., 2003; Gaucher et al., 2004], **bold** represents proteins found in mitoproteomes of other rat tissues [Forner et al., 2006; Reifschneider et al., 2006], **bold italics** represents proteins found in both human heart and other rat tissue mitoproteomes [Taylor et al., 2003; Gaucher et al., 2006; Reifschneider et al., 2006].

Rat Colon Mitochondrial Associated Proteins

Fig. 4. Functional classification of the 430 proteins identified from rat colon mitochondrial enriched fractions.

organ specific differences in mitoproteomes [Taylor et al., 2003; Gaucher et al., 2004; Kiri et al., 2005; Lovell et al., 2005; Forner et al., 2006; Hunzinger et al., 2006; Kim et al., 2006;

Fig. 5. Common multiple protein expression forms of mitochondrial associated proteins identified in colon by LC/MS/MS compared with published mitoproteomes. * Taylor et al. [2003] and Gaucher et al. [2004]; ** Reifschneider et al. [2006] and Forner et al. [2006].

Miller et al., 2006; Reifschneider et al., 2006; Ruiz-Romero et al., 2006]. This implies that mitochondria may be regulated differently in specific cells and tissues. Studies of proteins associated with mitochondria from the liver [Forner et al., 2006; Reifschneider et al., 2006], kidney [Reifschneider et al., 2006], brain [Reifschneider et al., 2006], heart [Taylor et al., 2003; Gaucher et al., 2004; Forner et al., 2006; Reifschneider et al., 2006] and skeletal muscle [Forner et al., 2006; Reifschneider et al., 2006] have previously been reported. These studies provide insights into the optimal functioning and regulation of mitochondria in these tissues and the subsequent determination of altered regulation associated with dysfunction and disease. This study is the first to profile the proteins associated with mitochondria extracted from rat colon and is significant considering that rat models are used extensively to study human colon pathologies, such as inflammatory bowel disease and cancer [Corpet and Parnaud, 1999; Drew et al., 2005ab, 2006a; Mazzon et al., 2005; Yuki et al., 2006].

This study of mitochondria enriched fractions from rat colon revealed resolution of

Fig. 6. Profile of GRAVY values of mitochondrial associated proteins of rat colon. The plot shows the index of hydrophobicity for the identified mitochondrial associated proteins calculated using Kyte and Doolittle [1982] (http://bioinformatics.org/sms2/protein_gravy.html).

430 proteins consisting of 195 different proteins and 23 unknown proteins that were distributed into 11 functional groups (see Table I and Fig. 4). Hence, around 50% of the resolved proteins from the colon mitochondrial enriched fractions are multiple protein expression forms (MPEFs) (Table II). The number of identified proteins is greater than other published studies using 2D PAGE [Hunzinger et al., 2006; McDonald et al., 2006; Reifschneider et al., 2006]. However, Coomassie blue staining of proteins used in this study ensures sufficient quantities of protein are available for identification, while LC/MS/MS maximises positive identification. The presence of multiple protein expression forms (MPEFs) with several spots being identified as the same protein, potentially representing splice variants, truncated products or co- and post-translational modifications has been highlighted by Yang et al. [2005] and Hunzinger et al. [2006]. Comparative proteomic studies often fail to identify the entire complement of MPEFs for a specific protein present on a 2D gel. The current analysis of MPEFs associated with the colon mitochondria will assist interpretation and analysis of proteomic data from future studies employing comparative proteomics of colon mitochondria. MPEFs present a significant problem in

TABLE II. Multiple Protein Expression Forms of Identified Proteins, Categorised by Functional Groups, From Mitochondrial Enriched Fractions of the Rat Colon

No. of different proteins	No. of resolved proteins	% MPEFs
5	9	44
5	11	55
58	128	55
14	15	7
20	59	66
13	39	67
25	28	10
9	18	50
4	5	20
27	63	57
16	32	50
	No. of different proteins 5 58 14 20 13 25 9 4 27 16	$\begin{array}{c c} \text{No. of different} \\ \text{proteins} \\ \hline \\ 5 \\ 5 \\ 11 \\ 58 \\ 128 \\ 14 \\ 15 \\ 20 \\ 59 \\ 13 \\ 25 \\ 25 \\ 28 \\ 9 \\ 18 \\ 4 \\ 5 \\ 27 \\ 63 \\ 16 \\ 32 \\ \hline \end{array}$

^aTable excludes unidentified proteins.

verifying comparative proteomic data since western blotting is often not suitable for verification of these MPEFs. The two-dimensional patterns resolved by 2D PAGE cannot be replicated using a one-dimensional format as the proteins often have similar mass and pI values. Antibodies often do not discriminate between the observed MPEFs due to the extensive regions of shared amino acid sequence. Furthermore, it is often not possible to properly interpret the biological significance of changes in protein expression patterns revealed by 2D gel analysis without an awareness of the complement and identification of MPEFs present.

Proteins involved in energy metabolism (EM) and oxidative phosphorylation (OXPHOS) represented the major group accounting for 43% of the resolved proteins (see Fig. 4), reflecting a significant function of the mitochondria. These groups included 58 and 20 different proteins respectively (Tables I and II) involved in the oxidative phosphorylation machinery, for example complex I–V subunits, proteins involved in the TCA cycle, for example fumarate hydratase mitochondrial precursor and those involved in fatty acid metabolism, for example carnitine *O*-palmitoyltransferase II precursor.

Seven percent of the proteins were involved in protein synthesis and degradation (Fig. 4). These 25 proteins (Tables I and II) are required to activate, synthesise and process precursor nuclear-encoded mitochondrial proteins that are imported into the mitochondria via transporters and channels, the latter accounting for 7% of the proteins associated with the colon mitochondria (Fig. 4). These precursor proteins require folding and 9% of the colon mitoproteome are involved in protein folding (Fig. 4). Redox proteins, such as manganese superoxide dismutase contribute a further 4% of the resolved proteins. Mitochondrial antioxidant defence systems play an important role in protecting mitochondria from reactive oxygen species produced from oxidative phosphorylation in the electron transport chain [Jezek and Hlavata, 2005].

Fifteen percent of the proteins were structural (see Fig. 4). This included a number of MPEFs, that is, 63 resolved spots identified as 27 different proteins. Structural proteins such as cytoskeletal proteins (actins, intermediate filaments and microtubules) play a central role in many cell functions such as the maintenance of cell shape, cell division, adhesion, signal transduction, protein sorting, mitosis, cell and intracellular organelle anchorage, gene regulation, motility during migration, differentiation and wound repair [Ku et al., 1999]. Studies have shown that mitochondria are closely associated, transported and positioned within cells via interaction with microtubules and actin filaments [Morris and Hollenbeck, 1995; Ligon and Steward, 2000; Carre et al., 2002]. This implies that the proteins associated with mitochondrial-enriched fractions may be indicative of processes linked to normal functioning of mitochondria in the colon. Proteins involved in calcium binding which were not previously associated with mitochondria, accounted for 2% for the colon mitoproteome. The presence of these proteins reflects the intimate relationship between mitochondria and other vesicular membranes such as the endoplasmic reticulum for calcium homeostasis [Breckenridge et al., 2003]. These proteins may also work closely with the structural proteins such as actins in exo- and endocytosis [Weinman et al., 1994; Merrifield et al., 2001]. Proteins involved in the cell cycle such as the mitochondrial inner membrane protein prohibitin made up 2% of the colon mitoproteome (Fig. 4). Other proteins in this group such as the histones, although not typically associated with mitochondria have also been identified by Taylor et al. [2003] and may be present due to the intimate association between mitochondria and the nucleus coupled with electrostatic interactions as suggested by Taylor et al. [2003].

The remaining 9% of proteins resolved were categorised as other proteins (Fig. 4). These include unidentified proteins and proteins with no currently established function, for example mucosal pentraxin [Van Der Meer-Van Kraaij et al., 2003; Drew et al., 2006b], as well as those whose functions could not be easily categorised into the other groups such as Stomatin (Epb7.2)-like 2.

Analysis of the proteins associated with the colon mitochondria revealed 72 proteins common to the mitoproteomes of rat liver, heart and skeletal muscle [Forner et al., 2006; Reifschneider et al., 2006]; and kidney and brain [Reifschneider et al., 2006] (Table I). Sixty-one percent of these common proteins are proteins involved in energy metabolism and OXPHOS again reflecting the major role of mitochondria in activities associated with respiration and possibly the abundance of these proteins in the mitoproteome. Comparison of the mitochondrial associated proteins of the rat colon with the previously published human heart mitoproteomes [Taylor et al., 2003; Gaucher et al., 2004] revealed 116 proteins common with the colon mitoproteome, with 58 of these proteins involved in energy metabolism and OXPHOS. Although the human heart mitoproteome had more proteins in common with the rat colon mitoproteome compared to other rat tissues [Forner et al., 2006; Reifschneider et al., 2006], this may be indicative of the methodologies used. Reifschneider et al. [2006] used 2D blue native/SDS PAGE and identified their resolved proteins using MALDI-TOF MS. Forner et al. [2006] and Taylor et al. [2003] used a 1D gel electrophoresis followed by liquid chromatography separation and LC/MS/MS that provides a greater degree of positive identification due to greater confidence of the peptide matching scores from MASCOT compared with MALDI-TOF MS. Using MALDI-TOF MS we found a 10-15% identification rate compared with 94% with LC/MS/MS (unpublished data). Hunzinger et al. [2006] recently demonstrated the 2D-IEF-SDS-PAGE resolved more spots and better separated protein isoforms compared with blue native SDS. benzvldimethvl-*n*-hexadecvlammonium chloride PAGE and tricine-urea/tricine SDS-PAGE. In comparative studies [Hunzinger et al., 2006; McDonald et al., 2006] LC/MS/MS provides better identification hydrophobic proteins. Membrane associated proteins, such as those of the mitochondria, have a hydrophobic protein distribution bias, that is, a greater degree of hydrophobic amino acids. This enables a better association with the hydrophobic 'tails' of fatty acids in the membranes themselves, particularly in protein transmembrane regions [Ho et al., 2006]. The degree of hydrophobicity can be depicted by GRAVY values [Kyte and Doolittle, 1982]. This study has a similar GRAVY value profile (Fig. 6) compared with other published mitoproteomes [Hunzinger et al., 2006; McDonald et al., 2006; Reifschneider et al., 2006] with the presence of membrane associated proteins such as malate dehydrogenase mitochondrial precursor (0.121) and tropomyosin alpha isoform 6(-1.018). Furthermore, differences in sample preparation in these studies also potentially contribute to differences in the mitochondrial proteins

analysed. Forner et al. [2006] also excluded proteins such as actin, keratins and haemoglobin from their result set as they were considered as contaminants. However, the current study and Taylor et al. [2003] both identified these proteins and have included them in the dataset. Further study is required to establish the association of these proteins in mitochondrial functions. There were 69 proteins not previously identified as associated with mitoproteome analysis of other organs studied [Taylor et al., 2003; Forner et al., 2006; Reifschneider et al., 2006]. Over half of these novel proteins were structural proteins and those involved in protein synthesis and degradation and may be indicative of the differences in the sample processing as described above, as well as variations between mitochondrial proteins of differing organs.

Proteomic profiling of mitochondria and associated proteins involved in mitochondrial regulation and trafficking within cells and tissues has the potential to provide insights into mitochondrial dysfunction associated with many human diseases. Furthermore, profiling of organ specific mitoproteomes will potentially reveal organ specific roles of the mitochondria and assist in study of organ specific disease associated with mitochondrial dysfunction. Thus the colon mitoproteome analysis presented here provides a useful tool to assist in identification and interpretation mitochondrial dysfunction implicated in colon pathogenesis.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Julian Mercer and staff at BioResources Unit, Rowett Research Institute, for their help in animal care and tissue harvest. The Scottish Executive Environment and Rural Affairs Department (SEERAD), Scotland supported this work.

REFERENCES

- Anderson L. 1991. Two dimensional electrophoresis— Operation of the ISO-DALT System. Rockville, MD, USA: Large Scale Biology Press.
- Brandon M, Baldi P, Wallace DC. 2006. Mitochondrial mutations in cancer. Oncogene 25:4647-4662.
- Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC. 2003. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22:8608–8618.
- Carre M, Andre N, Carles G, Borghi H, Bichese L, Briand C, Braguer D. 2002. Tubulin is an inherent component of mitochondrial membranes that interacts with the

voltage-dependent anion channel. J Biol Chem 277: 33664–33669.

- Cole AR, Ji H, Simpson RJ. 2002. Proteomic analysis of colonic crypts from normal, multiple intestinal neoplasia and p53-null mice: A comparison with colonic polyps. Electrophoresis 21:1772–1781.
- Corpet DE, Parnaud G. 1999. Polyethylene glycol, a potent suppressor of azoxymethane-induced colonic aberrant crypt foci in rats. Carcinogenesis 20:915–918.
- Cuezva JM, Krajewska M, de Heredia ML, Krajewski S, Santamaria G, Kim H, Zapata JM, Marusawa H, Chamorro M, Reed JC. 2002. The bioenergetic signature of cancer: A marker of tumour progression. Cancer Res 62:6674–6681.
- Drew JE, Rucklidge GJ, Duncan G, Lufty A, Farquharson AJ, Reid MD, Russell WR, Morrice PC, Arthur JR, Duthie GG. 2005a. A proteomic approach to identify changes in protein profiles in pre-cancerous colon. Biochem Pharmacol 70:888–893.
- Drew JE, Arthur JR, Farquharson AJ, Russell WR, Morrice PC, Duthie GG. 2005b. Salicylic acid modulates oxidative stress and glutathione peroxidase activity in the rat colon. Biochem Pharmacol 70:888–893.
- Drew JE, Padidar S, Horgan G, Duthie GG, Russell WR, Reid M, Duncan G, Rucklidge GJ. 2006a. Salicylate modulates oxidative stress in the rat colon: A proteomic approach. Biochem Pharmacol 72:204–216.
- Drew JE, Farquharson AJ, Keijer J, Barrera LN. 2006b. Complex regulation of mucosal pentraxin (*Mptx*) revealed by discrete mico-anatomical locations in colon. Biochem Biophys Acta 1762:844–848.
- Farhadi A, Keshavarzian A, Van de Kar LD, Jakate S, Domm A, Zhang L, Shaikh M, Banan A, Fields JZ. 2005. Heightened responses to stressors in patients with inflammatory bowel disease. Am J Gastroenterol 100: 1796–1804.
- Fawcett DW. 1981. The cell. Philadelphia: WB Saunders.
- Forner F, Foster LJ, Campanaro S, Valle G, Mann M. 2006. Quantitative proteomic comparison of rat mitochondria from muscle, heart and liver. Mol Cell Proteomics 5:608– 619.
- Gaucher SP, Taylor SW, Fahy E, Zhang B, Warnock DE, Ghosh SS, Gibson BW. 2004. Expanded coverage of the human heart mitochondrial proteome using multidimensional liquid chromatography coupled with tandem mass spectrometry. J Proteome Res 3:495–505.
- Heerdt BG, Houston MA, Anthony GM, Augenlicht LH. 1998. Mitochondrial membrane potential (delta psi (mt)) in the coordination of p53-independent proliferation and apoptosis pathways in human colonic carcinoma cells. Cancer Res 58:2869–2875.
- Ho E, Hayen A, Wilkins MR. 2006. Characterisation of organellar proteomes: A guide to subcellular proteomic fractionation and analysis. Proteomics 6:5746– 5757.
- Horton P, Nakai K. 1997. Better prediction of protein cellular localization sites with the k nearest neighbor classifier. Intell Syst Mol Biol 5:147–152.
- Hunzinger C, Wozny W, Schwall GP, Poznanovic S, Stegmann W, Zengerling H, Schoepf R, Groebe K, Cahill MA, Osiewacz HD, Jagemann N, Bloch M, Dencher NA, Krause F, Schrattenholz A. 2006. Comparative profiling of the mammalian mitochondrial proteome: multiple aconitase-2 isoforms including *N*-formylkynurenine mod-

ifications as part of a protein biomarker signature for reactive oxidative species. J Proteome Res 5:625–633.

- Isidoro A, Martinez M, Fernandez PL, Ortega AD, Santamaria G, Chamorrow M, Reed JC, Cuezva M. 2004. Alterations of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem J 378:17–20.
- Jezek P, Hlavata L. 2005. Mitochondria in homeostasis of reactive oxygen species in cell, tissues and organism. IJBCB 37:2478-2503.
- Kim N, Lee Y, Kim H, Joo H, Youm JB, Park QS, Warda M, Cuong DV, Han J. 2006. Potential biomarkers for ischemic heart damage identified in mitochondrial proteins by comparative proteomics. Proteomics 6: 1237-1249.
- Kiri AN, Tran HC, Drahos KL, Lan W, McRorie DK, Horn MJ. 2005. Proteomic changes in bovine heart mitochondria with age: Using a novel technique for organelle separation and enrichment. J Biomol Technol 16:371– 379.
- Ku NO, Zhou X, Toivola DM, Omary MB. 1999. The cytoskeleton of digestive epithelia in health and disease. Am J Physiol 277:G1108–G1137.
- Kyte J, Doolittle RF. 1982. A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132.
- Lakshman M, Subramaniam V, Jothy S. 2004. CD44 negatively regulates apoptosis in murine colonic epithelium via the mitochondrial pathway. Exp Mol Pathol 76: 196–204.
- Li YZ, Li CJ, Pinto AV, Pardee AB. 1999. Release of mitochondrial cytochrome C in both apoptosis and necrosis induced by beta-lapachone in human carcinoma cells. Mol Med 5:232–239.
- Ligon LA, Steward O. 2000. Role of microtubules and actin filaments in the movement of mitochondria in the axons and dendrites of cultured hippocampal neurons. J Comp Neurol 427:351–361.
- Lovell MA, Xiong S, Markesbery WR, Lynn BC. 2005. Quantitative proteomic analysis of mitochondria from primary neuron cultures treated with amyloid beta peptide. Neurochem Res 30:113–122.
- Mancini M, Anderson BO, Caldwell E, Sedghinasab M, Paty PB, Hockenbery DM. 1997. Mitochondrial proliferation and paradoxical membrane depolarisation during terminal differentiation and apoptosis in a human colon carcinoma cell line. J Cell Biol 138:449–469.
- Mannella CA. 2006. The relevance of mitochondrial membrane topology to mitochondrial function. Biochim Biophys Acta 1762:140–147.
- Mazzanti R, Giulivi C. 2006. Co-ordination of nuclear and mitochondrial DNA encoded proteins in cancer and normal colon tissues. Biochem Biophys Acta 1757:618– 623.
- Mazzanti R, Solazzo M, Fantappie O, Elfering S, Pantaleo P, Bechi P, Cianchi F, Ettl A, Giulivi C. 2006. Differential expression proteomics of human colon cancer. Am J Physiol Gastrointest Liver Physiol 290:G1329–G1338.
- Mazzon E, Muia C, Paola RD, Genovese T, Menegazzi M, De Sarro A, Suzuki A, Cuzzocrea S. 2005. Green tea polyphenol extract attenuates colon injury induced by experimental colitis. Free Radic Res 39:1017.
- McDonald T, Sheng S, Stanley B, Chen D, Ko Y, Cole RN, Pedersen P, Van Eyk JE. 2006. Expanding the

subproteome of the inner mitochondria using protein separation technologies: One- and two-dimensional liquid chromatography and two-dimensional gel electrophoresis. Mol Cell Proteomics 5:2392–23411.

- Merrifield CJ, Rescher U, Almers W, Proust J, Gerke V, Sechi AS, Moss SE. 2001. Annexin 2 has an essential role in actin-based macropinocytic rocketing. Curr Biol 11: 1136–1141.
- Mignotte B, Vayssiere JL. 1998. Mitochondria and apoptosis. Eur J Biochem 252:1–15.
- Miller I, Gemeiner M, Gesslbauer B, Kungl A, Piskernik C, Haindl S, Nurnberger S, Bahrami S, Redl H, Kozlov AV. 2006. Proteome analysis of rat liver mitochondria reveals a possible compensatory response to endotoxic shock. FEBS Lett 580:1257–1262.
- Modica-Napolitano JS, Steele GD, Jr., Chen LB. 1989. Aberrant mitochondria in two human colon carcinoma cell lines. Cancer Res 49:3369–3373.
- Morris RL, Hollenbeck PJ. 1995. Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J Cell Biol 131:1315–1326.
- Nakai N, Horton P. 1999. PSORT: A program for detecting the sorting signals of proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–35.
- Nazli A, Yang PC, Jury J, Howe K, Watson JL, Soderholm JD, Sherman PM, Perdue MH, McKay DM. 2004. Epithelia under metabolic stress perceive commensal bacteria as a threat. Am J Pathol 164:947–957.
- Oseroff AR. 1986. Intramitochondrial dyes allow selective in vitro photolysis of carcinoma cells. Proc Natl Acad Sci USA 83:9729–9733.
- Pleshkwych A, Maurer TC, Porter CW. 1983. Ultrastructural changes in the mitochondria of intestinal epithelium of rodent treated with methylglyoxal-bis(guanylhydrazone). Cancer Res 43:646–652.
- Rana RS, Stevens RH, Oberley L, Loven DB, Graves JM, Cole DA, Meek ES. 1980. Evidence for a defective mitochondrial membrane in 1,20dimethylhydrazineinduced colon adenocarcinoma in rat: Enhanced lipid peroxidation potential in vitro. Cancer Lett 9:237-244.
- Reifschneider NH, Goto S, Nakomoto H, Takahashi R, Sugawa M, Dencher N, Krause F. 2006. Defining the mitochondrial proteomes from five rat organs in a physiologically significant context using 2D blue-native/ SDS-PAGE. J Proteome Res 5:1117–1132.
- Ruemmele FM, Schwartz S, Seidman EG, Dionne S, Levy E, Lentze MJ. 2003. Butyrate induced Caco-2 cell apoptosis is mediated via the mitochondrial pathway. Gut 52:94–100.
- Ruiz-Romero C, Lopez-Armada MJ, Blanco FJ. 2006. Mitochondrial proteomic characterization of human

normal articular chondrocytes. Osteoarthritis Cartilage 14:507–518.

- Schapira AH. 2006. Mitochondrial disease. Lancet 368: 70–82.
- Scheffler IE. 1999. Mitochondria. New York: Wiley-Liss Publication.
- Scheffler IE. 2001. Mitochondria make a come back. Adv Drug Delivery Rev 49:3–26.
- Soderholm JD, Yang PC, Ceponis P, Vohra A, Riddell R, Sherman PM, Perdue MH. 2002. Chronic stress induces mast cell-dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology 123:1099–1108.
- Sun AS, Sepkowitz K, Geller SA. 1981. A study of some mitochondrial and peroxisomal enzymes in human colonic adenocarcinoma. Lab Invest 44:13–17.
- Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE, Wiley S, Murphy AN, Gaucher SP, Capaldi RA, Gibson BW, Ghosh SS. 2003. Characterisation of the human heart mitochondrial proteome. Nat Biotechnol 21:281– 286.
- Toivola DM, Krishnan S, Binder HJ, Singh SK, Omary MB. 2004. Keratins modulate colonocyte electrolyte transport via protein mistargeting. J Cell Biol 6:911–921.
- Tutton PJ, Barkla DH. 1997. Cytotoxicity of 5,6-dihydroxytryptamine in dimethylhydrazine-induced carcinomas of rat colon. Cancer Res 37:1241–1244.
- Van Der Meer-Van Kraaij C, Van Lieshout EM, Kramer E, Van Der Meer R, Keijer J. 2003. Mucosal pentraxin (Mptx), a novel rat gene 10-fold down-regulated in colon by dietary heme. FASEB J 17:1277–1285.
- van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P. 2002. The role of mitochondrial factors in apoptosis: A Russian roulette with more than one bullet. Cell Death Differ 9:1031–1042.
- Wang H, MacNaughton WK. 2005. Overexpressed betacatenin blocks nitric oxide-induced apoptosis in colonic cancer cells. Cancer Res 65:8604–8607.
- Weinman JS, Feinberg JM, Rainteau DP, Gaspera BD, Weinman SJ. 1994. Annexins in rat enterocytes and hepatocyte: An immunogold electron-microscope study. Cell Tissue Res 278:389–397.
- Yang JW, Juranville JF, Hoger H, Fountoulakis M, Lubec G. 2005. Molecular diversity of rat brain proteins as revealed by proteomic analysis. Mol Divers 9:385– 396.
- Yuki T, Ishihara S, Rumi MA, Ortega-Cava CF, Kadowaki Y, Kazumori H, Ishimura N, Amano Y, Moriyama N, Kinoshita Y. 2006. Increased expression of midkine in the rat colon during healing of experimental colitis. Am J Physiol Gastrointest Liver Physiol 291:G735–G743.